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Abstract:  Complex analysis is simply the culmination of a thorough study of fundamental concepts of complex 

differentiation and integration, and has a flavour not found in the real domain. It can effectively used for 

constructing solutions to the Laplace equation on complicated planar domains which can be found in a broad range 

of physical problems, such as fluid mechanics, thermodynamics, aerodynamics, electrostatics and elasticity. 

However, in the present paper, the authors introduced and studied a new subclass ),(,

, 


m

lM  of Bazilevic 

type in the open unit disk where coefficient inequalities, distortion theorems, modified Hadamard products among 

others for functions belonging to the aforementioned subclass were obtained while several interesting corollaries 

follow as simple consequences. 
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Introduction 

Suppose that jA  denote the class of functions of the form; 
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Catas et al. (2008) introduced and studied the differential operator )(),( zflI m  for )()( pAzf j  such that;  
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From (1), one can write that 
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For detailed one can see Hamzat and Olayiwola, 2015; Oladipo and Breaz, 2013.  

Now (4) can be written as;  
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Or as; 
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Remark 

It is observed that if 1  and 0l  in (5), then the expression readily becomes the famous class of Bazilevic function 

studied by different authors (Opoola, 1994; Oladipo and Breaz, 2013). 

With the aid of (5), we give the following definition which shall be necessary for the sake of the present investigation. 

Definition: Let 
)(zf  be given by (3), then ),()( ,
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lMzf   if and only if 
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Theorem 2.1: Let the function 
)(zf  be defined by (3).Then, ),()( ,
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lMzf   if and only if; 
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Proof: Assuming that the inequality (7) holds true. Then, for 1 rz , we show that;  
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Since zz )Re(  for all z , the following inequality; 
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is obtained. By choosing the values of z  on the real axis so that 
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denominator in (8) as 
1z  through real values, then;   
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which readily gives the inequality (7) and thus the proof of theorem 2.1. 

Corollary 2.2. Let the function 
)(zf  defined by (3) be in the class ),(,
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This result is sharp for function 
)(zf  given by; 
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Corollary 2.3. Let the function 
)(zf  defined by (3). Then ),()( ,
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Distortion Theorems 

Theorem 2.5 Let the function 
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For Uz and mi 0 . The above inequalities are attained for the function
)(zf  given by; 
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The inequalities (12) and (13) of theorem 2.5 would now follow immediately from (15) and (16) and this ends the proof of 

theorem 2.5. 

Corollary 2.6: Let the function 
)(zf  defined by (3) be in the class ),(,
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The inequalities in (17) and (18) are attained for function 
)(zf  given by (14). 

Proof: Letting 0i  in the theorem 2.5, our results in (17) and (18) follow immediately. 
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The inequalities in (19) and (20) are attained for function 
)(zf  given by (14). 
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Corollary 2.8: Let the function 
)(zf  defined by (3) be in the class ),(,
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Modified Hadamard Products 
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Thus it is sufficient to show that; 
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The result is sharp for the functions 
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Proof: Following the same procedure as in the proof of theorem 2.14, we need to find the largest 
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It follows from (49) and (50) that; 
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Or equivalently, 
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This ends the proof of Theorem 2.16. For related work on 

coefficient inequalities, distortion properties and Hadamard 

product one can Castas et al. (2008); Opoola (1994), among 

others. 
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